Система турбонаддува — принцип работы
Система турбонаддува — принцип работы
Мощность двигателя автомобиля напрямую зависит от того, какое количество топлива и какой объем воздуха поступают в двигатель. Чтобы повысить мощность двигателя, логично увеличить количество этих компонентов.
Просто увеличить количество топлива недостаточно, если при этом не увеличить объем воздуха, необходимого для максимально полного сгорания топлива. Использование турбокомпрессора дает возможность доставить больший объем воздуха в цилиндры, предварительно сжав его.
Принцип работы турбины двигателя таков: в цилиндры под давлением отработанных газов подается сжатый воздух, который вращает крыльчатку. Компрессор, расположенный на одном валу с крыльчаткой, нагнетает давление в цилиндр.
Турбонаддув от выхлопных газов – наиболее эффективная система увеличения мощности двигателя. Использование турбонаддува не увеличивает объем цилиндров и не влияет на частоту вращения коленвала.
Таким образом, помимо увеличения мощности, турбонаддув позволяет рационально расходовать топливо и уменьшить токсичность отработанных газов благодаря тому, что топливо сгорает полностью.
Устройство турбокомпрессора автомобиля
Система турбонаддува используется не только в дизельных, но и в бензиновых двигателях.
Система турбонадува состоит из следующих элементов:
- Турбокомпрессора;
- Интеркулера;
- Перепускного клапана;
- Регулировочного клапана;
- Выпускного коллектора.
Как устроена турбина?
Ознакомьтесь подробнее со строением турбокомпрессора в инфографике:
Принцип работы турбины дизельного двигателя
Работа дизельной турбины также основана на использовании энергии выхлопных газов.
В общих чертах принцип работы турбины дизеля выглядит так.
От выпускного коллектора выхлопные газы направляются в приемный патрубок турбины, после попадают на крыльчатку, принуждая ее двигаться. С крыльчаткой на одном валу расположен компрессор, который нагнетает давление в цилиндрах.
Основное отличие турбокомпрессорных агрегатов от атмосферных дизелей в том, что здесь в цилиндры воздух подается принудительно и под высоким давлением. Поэтому на цилиндр попадает значительно большее количество воздуха. В сочетании с большим объемом подающегося топлива мы получаем прирост мощности порядка 25%. При этом пропорции воздушно-топливной смеси остаются неизменными.
Чтобы еще больше увеличить объем поступающего в цилиндры воздуха, используется интеркулер – устройство, предназначенное для охлаждения атмосферного воздуха перед подачей его в двигатель. Это позволяет за один цикл подать в цилиндр еще больше воздуха, так как, холодный, он занимает меньше места.
Технология турбонаддува используется в случаях, когда необходимо увеличить мощность мотора и при этом оставить неизменными его размеры и габариты.
Более наглядно схема работы турбины показана в этом видео:
Принцип работы дизельной турбины несколько отличается от работы турбины на бензиновом двигателе. В чем отличие? Давайте рассмотрим подробнее.
Отличие работы турбины бензинового двигателя
Основное отличие турбин бензинового двигателя от турбин дизельного в том, что последние раскручиваются с помощью выхлопных газов, температура которых достигает 850 градусов. А турбина бензинового двигателя раскручивается с помощью газов, имеющих температуру от 1000 градусов. Имея одинаковый принцип работы, бензиновая турбина изготовлена из более жароустойчивых сплавов, нежели турбина дизельная.
Само строение бензиновой турбины также имеет некоторые отличия, в частности угол входа, крутка лопаток и т.д. По этой причине не стоит использовать дизельные турбины для наддува бензинового двигателя, впрочем, как и наоборот (подробнее в статье).
Принцип работы турбины на дизельном двигателе
В свое время силовые двигатели, усиленные турбиной, встречались только на грузовых машинах, да и то не на всех. Несколько позже стали турбировать и легковые автомобили, предназначенные для гонок. В наше время моторы, оснащенные турбинами, отлично ведут себя на обычном легковом транспорте. Линейный ряд этих двигателей развивается так быстро, что простым моторам внутреннего сгорания уже ничего не осталось, чтобы уступить первенство усовершенствованным аналогам.
Содержание:
Принципиальная схема
Чтобы понимать, как работает турбина, следует ознакомиться с порядком функционирования ДВС.
Как правило, большинство моторов четырехтактные поршневые, их работа всегда под контролем клапанов впускной и выпускной групп. Один цикл работы составляет четыре такта, которые проходят за два полных оборота коленчатого вала.
Принцип работы турбины на дизельном двигателе довольно прост и состоит из следующих действий:
- впуск – поршень идет вниз, давая возможность проникать воздуху через впускной клапан;
- компрессия – в этот момент горючая смесь сжимается;
- процесс расширения – горючее входит под давлением и загорается;
- выпуск – поршень идет вверх, выпуская газ.
Турбина с изменяемой геометрией
Работа турбонаддува может сопровождаться некоторыми сложностями:
происходит задержка усиления мощности («турбояма») в момент резкого давления на газ;
выход из такого состояния меняется резким повышением воздействия наддува («турбоподхват»).
Возникновение первого явления возможно из-за инерционности системы. Чтобы решить такую проблему, применяют:
- турбинное устройство с изменяемой геометрией;
- используют пару параллельных либо последовательных компрессорных устройств;
- наддув комбинированного вида.
Турбина с изменяемой геометрией:
1 — направляющие лопатки; 2 — кольцо; 3 — рычаг; 4 — тяга вакуумного привода; 5 — турбинное колесо.
Устройство с интеркулером
При сжатии воздух изменяет не только плотность, но и температурный режим. Для сгорания топлива поступающий кислород довольно полезен, но выпускаемый горячий воздух оказывает разрушительное действие на всю систему. По этой причине используют интеркулер, своего рода радиатор, с помощью которого понижается температура. За счёт этого мощность двигателя увеличивается на 15-20 лошадиных сил.
Смысл работы устройства заключается в том, что горячие воздушные массы подвергаются охлаждению. Может быть воздушным и жидкостным.
Как определяется неисправность
Причины отказа работы турбины бывают разные, но к основным признакам этого можно отнести:
значительно понижается динамика, автомобиль «не тянет»;
- двигатель долго не выходит на нужную мощность;
- из трубы для выхлопных газов появился дымок голубого либо сизого оттенка;
- ощущается запах сгоревшего масла;
- мотор при работе «кушает» масло;
- под капотной крышкой появляются странные звуки;
- на холостом ходу движок работает нестабильно.
Порядок проверки
Если нет возможности проверить турбинное устройство в автосервисе, то это можно сделать самостоятельно, не покидая гаража.
Для начала проводится визуальный осмотр устройства. Изучается цвет дыма. Беловатые выхлопы говорят о том, что воздуховоды забиты, либо сливной масляный провод засорен. Если дым напоминает копоть, то подтверждает утечку масла. Сизость дымка говорит о том, что течет масло. После попадания в камеру, оно придает дыму сизоватость. Чтобы убедиться в своей правоте, необходимо снять фильтр очистки воздуха. Если он чист – причину искать следует в другом.
Теперь двигатель следует прогреть и приступить к очередному проверочному этапу, и пригласить на помощь напарника. Ищем патрубок, идущий от турбины к впускному коллектору. Пережав патрубок, даем команду давить на газ несколько секунд. По второй команде педаль резко отпускается. Рука, лежащая на патрубке, будет ощущать, как он расширяется. Это свидетельствует о том, что воздушное давление велико. Если такого не происходит – турбина вышла из строя.
Проще всего, если есть датчик давления турбины. По его работе быстро определяется пригодность турбинного устройства.
Необходимо помнить, что турбина считается довольно чувствительной частью мотора, и способна утратить работоспособность по малейшим причинам. Но продлить ее срок эксплуатации возможно, организовав за двигателем минимальный уход.
Плюсы и минусы турбомотора. Зачем нужна турбина и есть ли у неё недостатки
Слово «турбо» теперь не редко встречается в автомобилях. Если раньше это было уместно в дизелях, то теперь и атмосферные бензиновые моторы становятся редкостью. Теперь все больше производителей уходят в «даунсайзинг» мотора и устанавливают турбину. В итоге, «турбо» — это не только маркетинг и былая редкость, а техника и обыденность. Но что хорошего в турбине и как она работает?
Выражаясь простым языком — турбокомпрессоры, они же турбины, значительно повышают эффективность и мощность двигателя за счет нагнетания большего количества воздуха (и топлива) в двигатель. В свою очередь, это означает, что мы можем приспособить турбокомпрессоры к двигателям меньшего объема и при этом получить ту же мощность и крутящий момент или даже больше, чем у обычного безнаддувного двигателя увеличенного объема, или даже с большим количеством цилиндров. В теории, меньшие по объему двигатели обычно используют меньше топлива.
Что это дало производителям? Во-первых, появилась возможность экономить на материалах. Банально, не нужно столько металла для производства мотора, что экономит место под капотом и уменьшает массу автомобиля. А в борьбе за экологию, каждый килограмм влияет на расход и выбросы. Во-вторых, особенностью турбонагнетателей является то, что они превращают побочный продукт работы двигателя — отработавшие выхлопные газы в полезный способ извлечения большей мощности из двигателя. В третьих, благодаря установку турбины появилась возможность на одном и том же двигателе добиваться разных показателей мощности. Вы только посмотрите, что делает Ford со своим EcoBoost или VAG с 1.2 TSI! Ну, и в экологические нормы стало легче укладываться.
Как работает турбина
По сути, турбокомпрессор состоит из турбины и компрессора. Корпус турбины принимает отработавшие газы, которые обычно просто расходуются впустую на атмосферниках, и вращают турбину на скоростях до 150000 об/мин. Затем происходит вращение компрессора, который втягивает воздух и сжимает его перед подачей в камеру сгорания двигателя.
Обычно камера сгорания пропускает столько воздуха, сколько позволяет атмосферное давление, которое создается вакуумом, когда поршень опускается. Но путем нагнетания воздуха из турбонагнетателя в цилиндр это позволяет загонять больше воздуха и топлива, что приводит к большему воспламенению.
Такой процесс можно сравнить с кузницей. Вы когда-нибудь видели, как кузнец делает подкову? Для того чтобы достичь определенной температуры в печке или горне просто сжигать дрова или уголь недостаточно, поэтому используют дополнительное нагнетание воздуха при помощи разных устройств. Избыток воздуха означает, что топливо сгорает быстрее и горячее, а металл может нагреваться достаточно, чтобы размягчиться и стать податливым к обработке. Кстати, этот принцип также объясняет, почему лесные пожары в ветреные дни горят жарче и разрушительнее. Турбокомпрессор использует точно такой же принцип. А поскольку они помогают сжигать больше топлива только тогда, когда вам нужно больше энергии, в остальное время они вообще не увеличивают расход топлива.
Основным недостатком турбин является так называемая «турбояма». Все слышали об этом, но не все знают, что это такое. Турбояма — это определенная задержка между тем, когда вы нажали педаль акселлератора и получением результата от этого, собственно разгон или динамику. Выхлопным газам просто нужно некоторое время, чтобы начать проноситься и вращать турбокомпрессор. Турбояма (задержка) — в основном, это проблема малообъемных моторов с устаревшей конструкцией. В настоящее время инженеры серьезно продвинулись в решении вопросов с задержкой. Для этого используют разные способы, например устанавливают еще одну турбину или механический компрессор, но это уже другая история.
Турбонаддув – назначение, устройство и принцип работы
Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала.
Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.
Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.
Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.
Устройство
Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.
Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.
Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.
Его устройство выглядит следующим образом:
Устройство турбонагнетателя:
1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.
Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.
Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.
Как работает турбонаддув
Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.
Принцип работы турбонаддува
Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.
Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.
О отрицательных особенностях турбонаддува
Конструкция системы турбонаддува обуславливает некоторые отрицательные особенности, возникающие при её работе.
Одна из них – эффект «турбоямы» (turbolag): при резком нажатии на педаль акселератора увеличение мощности двигателя происходит с задержкой. Причина этого в инерционности системы: нужно определённое время для увеличения давления в наддуве, если на газ нажали резко. Избежать этой ситуацию становится возможным, либо применяя турбину с изменяемой геометрией, либо используя два турбокомпрессора, работающих параллельно или последовательно (bi-turbo или twin-turbo), либо задействовав комбинированный наддув.
Второй неприятный момент – это «турбоподхват»: вслед за преодолением «турбоямы» происходит резкое увеличение давления в наддуве.
Турбина с изменяемой геометрией или VNT турбина, способна оптимизировать движение потока отработавших газов, меняя размер входного канала. Наиболее распространены такие турбины в серийных системах турбонаддува дизельных двигателей известных автопроизводителей (например, TDI у Volkswagen).
Турбонаддув с двумя параллельно работающими турбокомпрессорами находит большее применение для мощных V-образных двигателей. При этом на каждый ряд цилиндров двигателя работает свой турбокомпрессор. Выигрыш получается за счёт распределения инерции с одной большой турбины на две маленькие.
В случае установки двух турбин в последовательном режиме выигрыш производительности достигается путём работы разных турбокомпрессоров для разных значений оборотов двигателя. Изредка встречаются случаи установки трёх турбокомпрессоров последовательно (triple-turbo, например, у BMW), ещё реже – четырёх (quad-turbo у Bugatti).
При комбинированном наддуве (twincharger) совместно используется турбонаддув и механический наддув. Сжатие воздуха при низких оборотах коленчатого вала происходит с помощью механического нагнетателя. С увеличением оборотов в работу включается турбокомпрессор, а при достижении их определённой частоты работа механического нагнетателя прекращается (например, TSI у Volkswagen).
Видео — как работает турбина:
Применение турбонаддува особенно эффективно для дизельных двигателей мощных грузовиков: расход топлива увеличивается ненамного, зато мощность двигателя и крутящий момент заметно повышаются.
Турбокомпрессоры, наиболее мощные в пропорции к мощности двигателя, применяются для дизелей тепловозов. По абсолютному же значению, самые мощные турбокомпрессоры устанавливаются в судовые двигатели (до десятков тысяч киловатт).
Как работает турбина, принцип действия турбины
Термин «турбо» практически у всех на слуху. Свистит турбина, ревёт прямоток. Хоть единожды в жизни любому автолюбителю приходила в голову идея заиметь «турбомонстрика». Любому хочется увеличить поголовье «коняшек» под капотом. Но чаще всего приходится отказываться от мечты по причине мнимой дороговизны и непрактичности. Соответствует ли это реальности? Давайте разберёмся, как работает турбина, принцип действия турбины, обратившись к теории.
Мощность движка напрямую зависит от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Назначение турбины — увеличить подачу воздушно-топливной смеси. Мощность мотора повышается пропорционально увеличению количества сжигаемого за единицу времени топлива. Но для горения бензина необходим недюжинный запас воздуха в моторе. То есть, чем больше сжигаем бензина, тем большее количество воздуха нужно, которое необходимо «впихнуть» в мотор (именно, «впихнуть», так как сам мотор не справится с забором такого количества воздуха, и фильтры нулевого сопротивления в этом ему не помощники). Вот тут и выходит на сцену устрашающая маленькая деталь — турбина.
У турбины нагнетатель-крыльчатка размещён на едином валу с турбиной-крыльчаткой, встроенной в выпускной коллектор, и приводимой в движение вращения с помощью отработанных газов. Величина частоты вращения часто выше 200 тыс. об/мин.
И здесь проявляется один минус: при резком нажатии газа, надо ждать увеличение оборотов мотора, увеличение давления выхлопных газов, раскрутку турбины, и загонку воздуха. Это явление называется turbo-lag (турбо-яма), и сегодня его умеют укрощать, справляться с данным эффектом. Для этих целей применяются два клапана. Один — для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. Другой клапан — для отработанных газов. Управление первым клапаном осуществляем, помимо прочего, давлением, возникающим во впускном коллекторе. Благодаря этому при сбросе газа немного снижается частота вращения турбинного ротора, а при очередном нажимании на педаль, подача воздуха задерживается на крохотные доли секунды — время, пока закрывается клапан.
В современных технологиях используется такой метод регулировки воздухоподачи, как изменение угла наклона компрессорных лопаток. Эта методика разработана давно, но долгое время не получалось применять её на практике. Примером может послужить в данном случае новое устройство наддува дизелей «Экотек» фирмы Opel. Основной недостаток применения турбин — короткий срок службы. Это происходит из-за высокой частоты вращения турбинного ротора, которая составляет 150-200 тыс. об/мин.
До сегодняшнего дня ограничение срока службы происходило благодаря долговечности подшипников. Практически, это были особые вкладыши, похожие на вкладыши коленчатого вала, смазываемые под давлением маслом. Степень износа таких подшипников была велика, но шарикоподшипники не могли выдержать высоких температур и высокой частоты вращения. Недавно был найден оптимальный выход. А именно, были разработаны подшипники с применением керамических шариков, заполненных постоянно имеющимся резервом смазки, что делало ненужным канал от нормативной масляной системы движка. В проектах — турбинный ротор из металлокерамики, обладающий меньшей инерцией и более лёгким весом (на 20% легче).
Существуют термины «твин-турбо» и «би-турбо». Бывает, что используют параллельно или последовательно две установки турбокомпрессоров, вместо одной. Диапазоны работ роторов управляются разными способами при последовательном наддуве.
Понятие «интеркулер» означает, что при неизбежном нагревании воздуха, который сжимается, в нём уменьшается содержание кислорода и плотность. Поэтому воздух перед подачей нуждается в охлаждении в радиаторе, дополнительно встроенном, который называется интеркулером.
Как обеспечить максимально эффективную работу турбонаддува в сложных конструктивных условиях?
При запуске двигателя вал начинает обильно смазываться маслом, подающимся на подшипники по каналам. Во время вращения двигателя создаётся давление, под которым турбина нормально действует. При остановке двигателя перестаёт функционировать и масляный насос, а вот вал мгновенно затормозить не может, и работает по инерции уже без смазки.
Чтобы дольше сохранить от износа вал, надо регулярно менять фильтры и масло, которое предназначено именно для турбонаддувных двигателей. И обязательно надо давать двигателю прогреться, не глушить его в один момент, а дать поработать на холостом ходу какое-то время. Это обеспечит запас времени для охлаждения деталей. Целесообразна также установка турбо-таймера, если он не предусмотрен конструктивно в автомобиле.
Первые сигналы того, что надо обращаться в ремонтную контору — появление густого белого дыма из глушителя и падение мощности. Это означает износ подшипников и уплотнительного кольца возле турбинной крыльчатки. Резко возрастает расход масла. Случается, что дыма нет, но мощность всё равно низка, а у дизелей — регулярный чёрный дым, свидетельствующий об износе наддува и скоплении нагара, что приводит к недостатку воздуха и торможению рабочих оборотов компрессора.
Очевидно, что эксплуатация турбонаддува не является сложной процедурой, необходимо лишь следующее:
аккуратность,
своевременная смена фильтров и масла,
применение определённых сортов масла,
осторожность в отношении перегрева турбонаддува по причине долгой езды на высоких оборотах, или дефектов в системе впрыска и зажигания.
Не менее важные моменты — состояние воздушного фильтра, его чистота. Нарушение целостности фильтра приводит к прониканию частиц пыли, разрушительно влияющих на срок службы компрессорной крыльчатки и двигателя.
В целом, от того, как мы обращаемся с турбонаддувом, зависит то, какой срок он прослужит. Следует помнить, что погубить турбонаддув можно в течение двух дней, если при появлении первых симптомов не обратиться сразу в ремонтную фирму. Поэтому не следует затягивать с ремонтом, и желательно выполнять все вышеперечисленные рекомендации для предотвращения возникновения неполадок.