Газораспределительный механизм
Газораспределительный механизм
Газораспределительный механизм (сокращенное наименование – ГРМ) предназначен для обеспечения своевременной подачи в цилиндры двигателя воздуха или топливно-воздушной смеси (в зависимости от типа двигателя) и выпуска из цилиндров отработавших газов. Данные функции реализуются за счет своевременного открытия и закрытия клапанов.
На самых распространенных четырехтактных поршневых двигателях внутреннего сгорания применяются клапанные газораспределительные механизмы, поэтому устройство ГРМ рассмотрено именно на его примере.
Газораспределительный механизм объединяет клапаны с приводом и распределительный вал с приводом.
Клапаны непосредственно осуществляют подачу в цилиндры воздуха (топливно-воздушной смеси) и выпуск отработавших газов. Клапан состоит из тарелки и стержня. На современных двигателях клапаны располагаются в головке блока цилиндров, а место соприкосновения клапана с ней называется седлом. Различают впускные и выпускные клапаны. Для лучшего наполнения цилиндров диаметр тарелки впускного клапана, как правило, больше, чем выпускного.
Клапан удерживается в закрытом состоянии с помощью пружины, а открывается при нажатии на стержень. Пружина закреплена на стержне с помощью тарелки пружины и сухарей. Клапанные пружины имеют определенную жесткость, обеспечивающую закрытие клапана при работе. Для предупреждения резонансных колебаний на клапанах может устанавливаться две пружины меньшей жесткости, имеющие противоположную навивку.
Клапаны изготавливаются из сплавов металлов. Рабочая кромка тарелки клапана усилена. Стержень впускного клапана, как правило, полнотелый, а выпускного – полый, с натриевым наполнением для лучшего охлаждения.
Большинство современных ДВС имеют по два впускных и два выпускных клапана на каждый цилиндр. Помимо данной схемы ГРМ используется: двухклапанная схема (один впускной, один выпускной), трехклапанная схема (два впускных, один выпускной), пятиклапанная схема (три впускных, два выпускных). Использование большего числа клапанов ограничивается размером камеры сгорания и сложностью привода.
Открытие клапана осуществляется с помощью привода, обеспечивающего передачу усилия от распределительного вала на клапан. В настоящее время применяются две основные схемы привода клапанов: гидравлические толкатели и роликовые рычаги.
Роликовые рычаги в качестве привода клапанов более предпочтительны, т.к. имеют меньшие потери на трение и меньшую массу. Роликовый рычаг (другие наименования – коромысло, рокер, от английского «коромысло») одной стороной опирается на стержень клапана, другой – на гидрокомпенсатор (в некоторых конструкциях на шаровую опору). Для снижения потерь на трение место сопряжения рычага и кулачка распределительного вала выполнено в виде ролика.
С помощью гидрокомпенсаторов в приводе клапанов реализуется нулевой тепловой зазор во всех положениях, обеспечивается меньший шум и мягкость работы. Конструктивно гидрокомпенсатор состоит из цилиндра, поршня с пружиной, обратного клапана и каналов для подвода масла. Гидравлический компенсатор, расположенный непосредственно на толкателе клапана, носит название гидравлического толкателя (гидротолкателя).
Распределительный вал обеспечивает функционирование газораспределительного механизма в соответствии с принятым для данного двигателя порядком работы цилиндров и фазами газораспределения. Он представляет собой вал с расположенными кулачками. Форма кулачков определяет фазы газораспределения, а именно моменты открытия-закрытия клапанов и продолжительность их работы. Существенное повышение эффективности ГРМ, а следовательно и улучшение характеристик двигателя дают различные системы изменения фаз газораспределения.
На современных двигателях распределительный вал расположен в головке блока цилиндров. Он вращается в подшипниках скольжения, выполненных в виде опор. Используются как разъемные опоры, так и неразъемные (вал вставляется с торца). В некоторых двигателях в опорах используются тонкостенные вкладыши. От перемещения в продольном направлении распределительный вал удерживается упорным подшипником, который располагается со стороны привода вала. К опорам распределительного вала по индивидуальным каналам и под давлением подается масло из системы смазки.
Различают две схемы расположения распределительного вала в головке блока цилиндров:
- одновальная – SOHC (Single OverHead Camshaft);
- двухвальная — DOHC (Double OverHead Camshaft).
В связи с широким применением четырех клапанов на один цилиндр предпочтение отдается двухвальной схеме ГРМ (один распределительный вал обеспечивает привод впускных клапанов, другой вал – выпускных). В V-образном двигателе устанавливается четыре распределительных вала — по два на каждый ряд цилиндров.
Распределительный вал приводится в действие от коленчатого вала с помощью привода, который осуществляет его вращение в два раза медленнее коленчатого вала (за один цикл работы двигателя конкретный клапан открывается только один раз). В качестве привода распределительного вала используются ременная, цепная и зубчатая передачи.
Ременная и цепная передачи приводят в действие распределительный вал, расположенный в головке блока цилиндров. Зубчатая передача вращает, как правило, распределительный вал в блоке цилиндров. В обиходе зубчатая передача привода распределительного вала носит название "гитара" (по форме двух соединенных шестерен).
Ременная и цепная передачи имеют как достоинства, так и недостатки, поэтому в ГРМ применяются на равных. Цепной привод более надежный и, соответственно, долговечный. Но цепь тяжелее ремня, поэтому требует дополнительных устройств для натяжения (натяжные ролики,) и гашения колебаний (успокоители). Натяжные ролики обеспечивают натяжение с помощью пружины и за счет давления масла в системе смазки. В качестве цепного привода распределительного вала используются одно- и двухрядные роликовые цепи. Постепенно их вытесняют зубчатые цепи, которые взаимодействуют с зубьями звездочки щеками особой формы. Помимо распределительного вала с помощью цепи может осуществляться привод масляного насоса, балансирных валов.
Ременной привод не требует смазки, поэтому на шкивы устанавливается открыто. Вместе с тем, ремень в сравнении с цепью имеет ограниченный ресурс. Правда этот ресурс не такой уж и малый. Современные ремни "пробегают" 100-150 тыс.км. В качестве ременного привода распределительного вала широко используются зубчатые ремни. Выступы на внутренней поверхности зубчатого ремня входят в зацепление с зубьями на шкивах (шестернях), тем самым обеспечивается вращение. На двигателях TDI используется эллиптическая шестерня привода зубчатого ремня, что позволяет снизить тяговые усилия и крутильные колебания распределительного вала. Наряду с распределительным валом зубчатый ремень может приводить масляный насос, насос охлаждающей жидкости, топливный насос высокого давления.
Газораспределительный механизм 4х и 2х дизелей
Газораспределительный механизм служит для осуществления фаз газораспределения двигателя, т. е. для открытия и закрытия впускных и выпускных клапанов в определенные моменты времени.
Привод газораспределительного механизма
По воздействию на детали газораспределения различают три вида приводов — шестеренчатый, валиковый и цепной: шестеренчатый применяется у большинства четырехтактных двигателей; валиковый — у некоторых быстроходных четырехтактных дизелей с верхним (над цилиндровыми крышками) расположением распределительного вала; цепной — у крупных двухтактных дизелей с прямоточно-клапанной продувкой, когда расстояние между коленчатым и газораспределительным валами достигает нескольких метров.
Шестеренчатый привод газораспределительного механизма (рис. 45, а). Ведущая шестерня 1, насаженная на коленчатый вал, передает вращение промежуточной шестерне 3, к которой болтами 2 крепится малая шестерня (находится позади большой, на рисунке не видна); от малой шестерни вращение передается на ведомую шестерню 5 газораспределительного вала 4. Общее передаточное отношение привода у четырехтактных дизелей подбирается так, чтобы частота вращения распределительного вала была в два раза меньше частоты вращения коленчатого.
Валиковый привод. На рис. 45, б изображена схема привода газораспределительных валов, вала топливных насосов и генератора двигателей Д-б. Вращение передается через коническую шестерню 5, насаженную на коленчатый вал, на шестерню 4 привода генератора и через вал 1 — на шестерню 2 вала привода топливных насосов, а также через вертикальным вал — на один из распределительных валов 3; второй вал приводится во вращение через две цилиндрические шестерни. Вертикальный вал 6 служит для привода масляного насоса и насоса охлаждения дизеля. Такой способ привода газораспределительных валов применяется при верхнем их расположении у небольших дизелей.
При верхнем расположении распределительных валов отсутствует индивидуальная система привода каждого клапана (толкатель, штанга, коромысло), что упрощает конструкцию двигателя в целом, однако при этом усложняется демонтаж цилиндровой крышки, так как при ее снятии приходится снимать оба распределительных вала.
Цепной привод газораспределительного вала двухтактного двигателя 7ДКРН 50/110-2 (БМЗ) показан на рис. 45, в. Вращение передается от коленчатого вала через ведущую шестерню 1 при помощи цепной передачи 2, состоящей из двух одинаковых втулочнороликовых цепей, на ведомую шестерню 10, насаженную на вал привода выпускных клапанов и топливных насосов. Направление цепи осуществляется при помощи промежуточных шестерен 3, 4, 5 и 13. Натяжение цепи поддерживается постоянным автоматически за счет шестерни 6, размещенной на качающемся вокруг оси 11 фигурном рычаге 7, штанги 8 и пружины 9. Привод вала воздухораспределителя осуществляется через шестерню 15, сидящую на одном валу с направляющей шестерней 13, промежуточную шестерню 14 и шестерню 12, которая насажена на вал воздухораспределителя.
Конструкция распределительных валов (рис. 46). Для открытия и закрытия впускных и выпускных клапанов на распределительный вал насаживают кулачные шайбы специального профиля, Иногда у небольших дизелей кулачные шайбы отковывают вместе с валом. У больших дизелей для удобства ремонта и монтажа распределительный вал изготавливают составным — из нескольких частей. У реверсивных дизелей обычно для привода каждого клапана имеются две кулачные шайбы — переднего и заднего хода, так как при реверсе дизеля изменяется газораспределение. [У двигателей фирмы «Бурмейстер и Байн» распределительный вал не перемещается, как обычно, а проворачивается на угол реверсирования, поэтому он имеет один комплект кулачных шайб]. Так как у многих современных дизелей реверсирование осуществляется без отвода толкателей клапанов между кулачными шайбами переднего и заднего хода, в районе активной части шайбы устраивают специальный скос. Очень часто на газораспределительном валу насажены шайбы привода топливных насосов, а иногда и воздухораспределителя.
Для изготовления распределительных валов тихоходных дизелей применяют углеродистую сталь 45, для валов быстроходных дизелей — легированную сталь 15Х. Кулачные шайбы изготавливают из сталей 15, 15Х с последующей цементацией, закалкой и шлифовкой. Иногда для изготовления кулачных шайб тихоходных дизелей возможно применение чугуна СЧ 28-48.
Детали газораспределительного механизма : толкатели, штанги, коромысла, впускные и выпускные клапаны. Конструкция деталей газораспределения двигателя 6ЧР 32/48 показана на рис. 47. При набегании кулачной шайбы 1, насаженной на распределительный вал 2, на ролик 3 толкателя 5 последний перемещает вверх штангу 6. Далее движение передается через запрессованный в штангу сферический сухарь 7, регулировочный болт 9 и коромысло 10 на клапан 16.
Посадка клапана в гнездо при сбегании кулачной шайбы с ролика толкателя осуществляется при помощи пружины 14. Качание коромысла происходит на игольчатом подшипнике 11, установленном на валу 12. Смазывается подшипник при помощи пресс-масленки 13. Зазор между клапаном и коромыслом устанавливают при помощи регулировочного болта 9 и контргайки 8. Толкатель 5 совершает возвратно-поступательное движение в направляющей втулке 4, а клапан — в направляющей 15.
Данная конструкция является простейшей и применяется у четырехтактных дизелей небольшой мощности.
У больших двухтактных дизелей с прямоточно-клапанной продувкой для привода клапана применяют гидравлические толкатели сложной конструкции. Клапаны у таких дизелей больших размеров и монтируются в специальном корпусе, имеющем зарубашечное пространство для подачи охлаждающей воды.
Конструкция такого клапана показана на рис. 48. Чугунный корпус 4 клапана имеет съемное седло 1 из перлитного чугуна. Крепится седло к корпусу винтами 2. Шпиндель клапана 8 совершает возвратнопоступательное движение в направляющих 7 и 11, снабженных бронзовыми втулками 12 и 20. Для предотвращения выпадания клапана при замене пружины на его шпиндель, в верхней части, насажено пружинящее кольцо 18. Посадку клапана в гнездо во время работы осуществляют две пружины 14 и 15, каждая из которых состоит из двух частей, разделенных средней тарелкой 13, связанной с коромыслом клапана. Пружины опираются на нижнюю тарелку 10. Фиксация пружин — при помощи верхней тарелки 16 и двух конических сухарей 17.
Для осмотра и очистки зарубашечного пространства корпус клапана имеет люк, закрытый крышкой 6.
Для предохранения шпинделя клапана от пригорания масла в газовой части на штоке имеется специальная насадка 3. Охлаждающая вода подается через отверстия 5 и 21 и отводится через канал 19. Смазывается шток клапана масленкой 9.
Предохранительные клапаны, индикаторные краны. Для предупреждения чрезмерного повышения давления в цилиндрах последние снабжают предохранительными клапанами. Пружину предохранительного клапана затягивают на давление, превышающее максимальное давление сгорания в цилиндре на 25%. Монтируется предохранительный клапан обычно на цилиндровой крышке дизеля.
Клапан 4 (рис. 49, а) — игольчатого типа, изготовлен из нержавеющей стали, притерт в бронзовом корпусе 5 и нагружен пружиной 3 через шпиндель 2. Усилие пружины, находящейся в корпусе 1, и, следовательно, давление открытия клапана регулируется изменением толщины дистанционного кольца 6.
Клапан периодически необходимо разбирать, очищать от нагара и притирать по гнезду. Для снятия индикаторных диаграмм цилиндры дизеля снабжают индикаторными кранами, которые также устанавливают на цилиндровых крышках.
У небольших дизелей для экономии места и устройства одного канала в цилиндровой крышке предохранительный клапан и индикаторный кран монтируют на общем корпусе (рис. 49, б): предохранительный клапан 1 и индикаторный кран 2 имеют общий штуцер 5, который ввертывают в цилиндровую крышку 3 и уплотняют красномедной прокладкой 4.
Материалы для изготовления деталей газораспределения: толкатель, ролики, ось ролика — стали 15,45, 15Х,40Х; коромысло (рычаг)— сталь 45, чугун ВЧ 50-1,5; корпус клапана — чугун СЧ 28-48, СЧ 21-40; клапан впускной — сталь 40Х; клапан выпускной — сталь Х9С2, 4Х10С2М (у некоторых дизелей тарелку впускного клапана изготавливают съемной из стали Х9С2 или 4Х10С2М, а шток клапана (шпиндель) — из стали 40Х); корпусы предохранительного клапана и индикаторного крана — сталь 35, клапан предохранительный и игла индикаторного крана — сталь 3X13.
Толкатель клапана: надежная связь распредвала и клапанов
Толкатель клапана: надежная связь распредвала и клапанов
В большинстве двигателей внутреннего сгорания газораспределительный механизм содержит детали, обеспечивающие передачу усилия от распределительного вала на клапаны — толкатели. Все о толкателях клапанов, их типах, конструкции и особенностях работы, а также об их выборе и замене читайте в этой статье.
Что такое толкатель клапана?
Толкатель клапана — деталь газораспределительного механизма поршневого двигателя внутреннего сгорания; следящее устройство ГРМ, осуществляющее передачу осевого усилия от распределительного вала на клапан непосредственно или через вспомогательные элементы (штангу, коромысло).
Газораспределительный механизм любого ДВС в общем случае основан на трех основных деталях: распределительном вале, который вращается синхронно (но с вдвое меньшей угловой скоростью) с коленчатым валом, клапанах и их привода. Привод клапанного механизма следит за положением распределительного вала и обеспечивает передачу усилия от него на клапаны. В качестве привода могут использоваться различные детали: штанги, коромысла со штангами и без них, и другие. В большинстве ГРМ применяются и дополнительные детали — толкатели.
Толкатели ГРМ выполняют ряд функций:
- Выступают в роли связующего звена между кулачком распредвала и другими деталями привода клапанов;
- Обеспечивают надежную передачу усилий от кулачка распредвала на каждый из клапанов;
- Равномерно распределяют нагрузки, возникающие при вращении распредвала и работе ГРМ;
- Повышают срок службы деталей ГРМ и облегчают его обслуживание;
- Толкатели определенных типов — обеспечивают необходимые температурные зазоры между деталями ГРМ и/или облегчают процесс их регулировки.
Толкатель клапана — важная деталь ГРМ, при неисправности которой работа двигателя значительно ухудшается. При поломке толкатель должен быть заменен, а, чтобы сделать верный выбор новой детали, необходимо разобраться в существующих типах и конструкциях толкателей.
Типы и конструкция толкателей клапанов
Различные типы толкателей клапанов
По конструкции и принципу работы толкатели делятся на несколько типов:
- Тарельчатые;
- Цилиндрические (поршневые);
- Роликовые;
- Гидравлические.
Каждый из толкателей имеет свои конструктивные особенности и сферы применения.
Тарельчатые толкатели клапанов
В общем случае такой толкатель состоит из стержня и тарельчатого основания, которым он опирается на кулачок распредвала. В торце стержня предусмотрена резьба для установки регулировочного болта с контргайкой, посредством которого осуществляется регулировка тепловых зазоров. Опорная часть толкателя подвергается термической обработке (цементации) с целью повышения ее износостойкости.
По форме опорной части (тарелки) данные толкатели делятся на две группы:
- С плоской опорной частью;
- Со сферической опорной частью.
Толкатели первого типа работают в паре с распределительным валом, имеющим кулачки с цилиндрической рабочей поверхностью. Толкатели второго типа применяются с распредвалами, имеющими конусные кулачки (со скошенной рабочей поверхностью) — вследствие такой конструкции толкатель во время работы двигателя вращается, что обеспечивает его равномерный износ.
Тарельчатые толкатели сейчас практически не используются, они устанавливались на двигатели с нижним или боковым расположением клапанов в паре со штангами или без них.
Цилиндрические (поршневые) толкатели клапанов
Толкатели данного типа бывают трех основных видов:
- Цилиндрические пустотелые;
- Стаканы под штангу;
- Стаканы под клапан.
В первом случае толкатель выполнен в виде закрытого цилиндра, который для облегчения конструкции имеет внутри полости и окна. На одном его торце предусмотрена резьба под регулировочный болт с контргайкой. Такие толкатели сегодня используются редко, так как они относительно массивны и увеличивают габариты всего ГРМ.
Во втором случае толкатель выполнен в виде стакана малого диаметра, внутри которого выполнено углубление (пята) под установку штанги толкателя. В стенках детали могут выполняться окошки для ее облегчения и нормальной смазки. Толкатели данного типа все еще встречаются на старых силовых агрегатах с нижним расположением распредвала.
В третьем случае толкатель выполнен в виде стакана большого диаметра, внутри которого выполнена контактная точка под упор в торец стержня клапана. Обычно толкатель тонкостенный, его днище и контактная точка термически обработаны (закалены или подвергнуты цементации). Такие детали получили самое широкое распространение, они устанавливаются в двигателях с верхним расположением распредвала и непосредственным приводом клапанов.
Разновидностью цилиндрического толкателя под клапан является толкатель с регулировочной шайбой, устанавливаемой в днище (в нее упирается кулачок распредвала). Шайба может иметь различную толщину, ее заменой осуществляется регулировка тепловых зазоров.
Роликовые толкатели клапанов
Толкатели данного типа бывают двух основных видов:
- Торцевые;
- Рычажные.
В первом случае толкатель выполнен в виде цилиндрического стержня, в нижней части которого через игольчатый подшипник установлен стальной ролик, а в верхнем торце предусмотрено углубление (пята) под штангу. Во втором случае деталь выполнена в виде рычага с одной опорой, на плече которого установлен ролик и находится углубление под штангу.
Устройства данного типа наиболее широко применяются в моторах с нижним расположением распределительного вала, на новых силовых агрегатах они практически не встречаются.
Гидравлические толкатели клапанов
Конструкция гидравлического толкателя (гидрокомпенсатора)
Гидравлические толкатели (гидрокомпенсаторы) — наиболее современное решение, которое используется на очень многих двигателях. Толкатели данного типа имеют встроенный гидравлический механизм регулировки тепловых зазоров, который в автоматическом режиме выбирает зазоры и обеспечивает нормальную работу мотора.
Основу конструкции толкателя составляет корпус (который одновременно выполняет функции плунжера), выполненный в виде широкого стакана. Внутри корпуса располагается подвижный цилиндр с обратным клапаном, который делит цилиндр на две полости. На наружной поверхности корпуса гидрокомпенсатора выполнена круговая канавка с отверстиями для подачи к цилиндру масла от системы смазки двигателя. Толкатель устанавливается на торец стержня клапана, при этом канавка на его корпусе совмещается с масляным каналом в головке блока.
Работает гидравлический толкатель следующим образом. В момент, когда кулачок распредвала набегает на толкатель, цилиндр испытывает давление со стороны клапана и сдвигается вверх, обратный клапан закрывается и запирает расположенное внутри цилиндра масло — вся конструкция движется, как единое целое, обеспечивая открывание клапана. В момент максимального нажима на толкатель часть масла может просочиться в зазоры между цилиндром и корпусом толкателя, что приводит к изменению рабочих зазоров.
При сбегании кулачка с толкателя клапан поднимается и закрывается, в этот момент корпус толкателя оказывается напротив масляного канала в ГБЦ, а давление в цилиндре падает практически до нуля. Вследствие этого масло, поступающего из головки, преодолевает усилие пружины обратного клапана и открывает его, поступая в цилиндр (точнее — в находящуюся внутри него нагнетательную камеру). За счет созданного давления корпус толкателя поднимается (так как цилиндр упирается в стержень клапана) и упирается в кулачок распредвала — так происходит выбор зазора. В дальнейшем процесс повторяется.
В процессе работы двигателя поверхность толкателей, кулачков распредвала и торцов стержней клапанов изнашиваются и деформируются, также вследствие нагрева несколько изменяются габариты других деталей распределительного механизма, что приводит к неконтролируемому изменению зазоров. Гидравлические толкатели компенсируют эти изменения, всегда обеспечивая отсутствие зазоров и нормальное функционирование всего механизма.
Вопросы выбора и замены толкателей клапанов
Любые толкатели, несмотря на термическую обработку их рабочих поверхностей, со временем изнашиваются или приходят в неисправность, нарушая работу двигателя. Проблемы с толкателями проявляются ухудшением работы двигателя, в том числе и некоторым изменением фаз газораспределения. Внешне эти неисправности проявляются характерным шумом мотора, который легко распознается опытными мастерами. Однако в случае двигателей с гидрокомпенсаторами шум сразу после запуска не является проблемой. Дело в том, что после простоя двигателя масло уходит из толкателей и каналов головки, и первые несколько секунд не обеспечивается выбор зазоров — это и проявляется стуком. Через несколько секунд работа системы налаживается и шум пропадает. Если же шум наблюдается более 10-12 секунд, тогда следует обратить внимание на состояние толкателей.
Неисправные толкатели должны меняться на новые тех же типов и каталожных номеров. Замену следует выполнять в соответствии с инструкцией по ремонту и ТО автомобиля, эта работа связана с частичной разборкой ГБЦ и требует применения специального инструмента (для рассухаривания клапанов и другого), поэтому ее лучше доверять специалистам. После замены толкателей периодически необходимо выполнять регулировку зазоров, если же используются гидрокомпнесаторы, то в обслуживании нет необходимости.
Крышки цилиндров и газораспределительный механизм
Крышки цилиндров. Конструкция зависит от типа двигателя, его размеров, камеры сгорания, органов газораспределения и других факторов. В мощных дизелях тепловозов крышки выполняются индивидуальными для каждого цилиндра. В быстроходных двигателях (типа М750, 1Д12 и др.) крышки каждого ряда цилиндров объединяются в одну деталь, называемую головкой.
Крышки цилиндров предназначены для образования камеры сгорания в цилиндре, а также для размещения клапанного механизма газораспределения и форсунки. К конструкции цилиндровых крышек предъявляются следующие требования: они должны иметь возможно меньшие термические напряжения и местные перегревы отдельных частей; иметь хороший и равномерный тепло-отвод потоками охлаждающей жидкости; иметь хороший доступ к полостям охлаждения для удаления накипи; обладать достаточной жесткостью и прочностью от действия давления газов в цилиндре; обеспечивать максимальные проходные сечения впускных и выпускных клапанов; должны быть удобны и просты в ремонте и обслуживании.
На крышку действуют термическое напряжение и давление газов и монтажных усилий. Температурное состояние днища крышки цилиндра характеризуется максимальной температурой в рай-
В процессе эксплуатации, даже при тщательном соблюдении режимов водоподготовки, на днище крышки происходит отложение накипи, что может привести к значительному увеличению температур и соответственно теплонапряженности днища.
Литая чугунная крышка цилиндра дизелей ПД1М и Д50 отличается длительной и надежной работой. Вода поступает из водяных полостей блока через 8 втулок, уплотненных кольцами из маслостойкой резины. В дизелях типа Д49 введена промежуточная диафрагма в крышке, которая, находясь на небольшом расстоянии от днища, увеличивает путь воде, охлаждающей крышку цилиндра. Подобное разделение потока воды имеется и в составной крышке дизелей 11Д45 (тепловозы ТЭП60) и 14Д40 (рис. 7.9) (тепловозы 2М62), у которой днище чугунное (плита), а остальные детали изготовлены из алюминиевого сплава.
Головки цилиндров двигателей типов 1Д12, М750, изготавливают из алюминиевых сплавов, а крышки цилиндров дизелей типа Д49 — из высокопрочного чугуна. Для выпускных клапанов в крышке устанавливают «плавающие» седла из жаростойкого сплава. В верхней части чугунных направляющих втулок клапанов имеются металлокерамические втулки, уплотняющие стержень клапана фторопластовыми кольцами и скребками. Острые кромки скребков снижают расход масла через направляющие втулки.
С конструкцией крышки двигателя тесно связано расположение и устройство газораспределительного механизма.
Газораспределительный механизм. Он предназначен для управления процессами впуска и выпуска газов в цилиндре двигателя внутреннего сгорания. Газораспределительные органы (рис. 7.10) должны обеспечивать хорошую очистку цилиндра и наполнение его свежим зарядом при высокой надежности в работе. Совершенство очистки цилиндра от отработавших газов и наполнение его свежим зарядом воздуха зависят, в основном, от величины проходного сечения и продолжительности его открытия. Величина проходного сечения ограничивается размерами цилиндра, а время открытия его зависит от частоты вращения коленчатого вала. Надежность работы клапанов и золотников в основном зависит от условий смазки, охлаждения, применяемых материалов и величины сил инерции деталей механизма.
По конструкции газораспределительные механизмы бывают следующих типов: клапанные, золотниковые и комбинированные.
Клапанный газораспределительный механизм применяется в четырехтактных двигателях типов Д49, ПД1М, М750, 1Д12, ЗЮБЯ и др. Клапаны располагаются в крышке цилиндров и называются подвесными или верхними. Это дает возможность получить компактную камеру сгорания, благоприятную для смесеобразования и сгорания топлива. Привод верхних клапанов осуществляется или непосредственно от распределительного вала (кулачкового) (дизеля типа М750, 1Д12), или от него же через промежуточные детали — толкатели, штанги, коромысла, траверсы.
Золотниковый (бесклапанный) газораспределительный механизм может осуществлять свою деятельность поступательно движущимися или вращающимися золотниками.
Созданы следующие схемы золотниковых газораспределителей (рис. 7.11):
с вращающимся плоским золотником;
с вращающимся цилиндрическим золотником;
прямоточно-щелевое с поступательно движущимися поршнями.
В двухтактных дизелях (типа Д100) с щелевой схемой газообмена золотниками служат поршни и окна во втулках цилиндра.
Комбинированный газораспределительный механизм в двухтактных двигателях с прямоточной клапан-но-щелевой схемой газообмена осуществляется поршнем и клапанами выпуска (дизеля Д40 — Д45). Клапанный механизм и крышки цилиндров (четырехтактных и двухтактных двигателей) во время работы подвергаются термодинамическим нагрузкам, особенно в момент посадки клапана на седло. Выпускные клапаны находятся в более тяжелых условиях, так как их головки во время выпуска омываются со всех сторон горячими газами. Температура впускных клапанов во время работы достигает 450 °С, а выпускных — до 950 °С. Высокие температуры отрицательно влияют на механические свойства материала, способствуют эрозии и газовой коррозии клапана, короблению его головки. Все это может вызвать неплотное прилегание головки клапана к седлу, заедание стержня в направляющей втулке и появление трещин в крышке цилиндра.
Наиболее часто встречающимися неисправностями механизма газораспределения дизелей являются: разрегулирование зазоров между бойками рычагов и колпачками толкателей; износ бронзовых подшипников в рычагах рабочих клапанов и рычагах толкателей из-за недостатка смазки; пропуск масла через сальники в рычагах клапанов; выбоины и трещины на поверхности катания роликов; трещины и погнутость рычагов толкателей, рычагов клапанов и штанг; ослабление креплений в соединениях; выкрашивание цементированного слоя или трещины в головках штанг и кулачках распределительного вала.
При проведении ТО-3 проверяют поступление масла к рычагам привода клапанов; исправность трубок, подводящих масло к подшипникам распределительного вала; исправность механизма газораспределения. В случае обнаружения пропуска воды или газов цилиндровую крышку снимают, заменяют резиновые уплотнения, притирают посадочные места.
При проведении ТР-1 выполняют объем работ ТО-3, проверяют крепления механизма привода клапанов и регулируют зазоры между клапанами и толкателями.
При проведении ТР-2 и ТР-3 проверяют величину зазора между крышкой и блоком; снимают форсунку и специальным приспособлением измеряют линейную величину камеры сжатия, которую при необходимости регулируют на дизелях ПД1М и Д50 подрезкой торца или бурта крышки цилиндра, а на дизелях типа Д40, Д45 и Д49 — изменением величины прокладки между втулкой и крышкой цилиндра (газовый стык).
Демонтаж крышки цилиндра дизелей Д50 и ПД1М начинают с отсоединения трубки высокого давления, клапанной коробки, штанг и патрубков выпускного, наддувочного, водяного коллекторов. Затем отворачивают гайки крепления крышки и разбирают клапанный механизм.
Крышку цилиндра дизелей типа Д40, Д45, Д49 отсоединяют от плиты блока и вынимают вместе со втулкой цилиндра, поршнем и шатуном (комплект).
После разборки детали крышки цилиндра очищают от грязи, нагара и масла. Внутренние полости крышки опрессовывают водой под давлением 0,75. 1 МПа в течение 3.5 мин.
Крышка цилиндра дизеля типа Д40, Д45 (см. рис. 7.9) состоит из чугунного днища и верхней части из алюминиевого сплава. Нарушение герметичности стыка не допускается. Зазор между стержнем клапана и направляющей втулкой должен быть не более 0,30 мм, при большей величине зазора втулку меняют. Проверяют биение стержня клапана, которое должно быть не более 0,15 мм, овальность клапана не должна превышать 0,1 мм. Клапаны проверяют на наличие трещин цветовой дефектоскопией. Ширина притирочного пояска на крышке и клапане должна быть 0,5.2 мм. Корпус крышки заменяют при обнаружении трещин. Износ рабочих поверхностей стержня и хвостовика толкателя восстанавливают хромированием с последующей шлифовкой и полировкой. Упругость пружин оценивают по высоте в свободном состоянии. Перпендикулярность торцовых поверхностей пружины ее оси контролируется на поверочной плите с помощью угольника и щупа. Восстанавливают перпендикулярность шлифованием концов пружины.
Рычаги толкателей клапанной коробки промывают струей керосина. Изношенные оси рычагов толкателей восстанавливают хромированием или вибродутовой наплавкой с последующей механической обработкой; допускается также восстановление зазоров путем шлифовки осей и постановки новых втулок. В случае изгиба рычагов толкателей и штанг их выправляют с предварительным нагревом до 100 °С. Самоуплотняющиеся сальники клапанных рычагов проверяют опрессовкой воздухом давлением 0,05.0,1 МПа. При значительной утечке воздуха через сальник его заменяют. В процессе сборки клапанной коробки контролируют совпадение и проходимость масляных каналов, целостность резиновых уплотнительных колец. По окончании сборки коробку опрессовывают на стенде нагретым до температуры 75 °С маслом давлением 0,03 МПа. Утечка масла не должна превышать 30 капель в 1 мин. Плотность гидротолкателей проверяют опрессовкой — собранный без пружины гидротолкатель заливают керосином и нагружают по оси грузом, силой 100 Н (10 кгс). Толкатель должен опуститься на 5 мм в течение 2.6 с.
Выкрашивание цементированного слоя на сферической поверхности головки рычага не допускается — головку заменяют. Прилегание новой головки к сферической поверхности сухаря проверяют по краске, площадь прилегания должна быть более 50 % поверхности. Зазор между толкателем и направляющей втулкой (0,06.0,5 мм) обеспечивают за счет подбора втулки. Уплотняющую резину заменяют при каждом ремонте независимо от ее состояния.
Лекция 3
3.4 Фазы газораспределения. Их влияние на работу двигателя.
3.5 Назначение системы охлаждения.
3.6 Общее устройство и работа жидкостной системы охлаждения.
3.7 Назначение системы смазки.
3.8. Общее устройство и работа системы смазки. Способы подачи масла к трущимся поверхностям.
Содержание лекции
3.1. Назначение ГРМ
Механизм газораспределения служит для открытия и закрытия клапанов, обеспечивая наполнение цилиндров двигателя горючей смесью (карбюраторные двигатели) или воздухом (дизели), выпуск отработавших газов и надежную изоляцию камеры сгорания от окружающей среды во время тактов сжатия и рабочего хода.
Четырехтактные автомобильные двигатели имеют клапанные механизмы газораспределения, в которых впуск горючей смеси и выпуск отработавших газов происходит при помощи впускных и выпускных клапанов.
3.2. Устройство и работа ГРМ
В большинстве двигателей ПА и АСА распределительные валы установлены в блоке цилиндров – нижнее расположение вала. Распределительные валы устанавливают и на головках блока – верхнее расположение вала (двигатели автомобилей «Газель», «Соболь»). В этом случае механизм газораспределения проще, но имеет довольно сложный привод. Обычно механизм газораспределения приводится в движение от коленчатого вала через зубчатые колеса.
Рис. 3.1. Схема механизма газораспределения с верхним расположением клапанов
1 – распределительный вал; 2 – толкатель; 3 – пружина; 4 – направляющая втулка; 5 – клапан; 6 – штанга; 7 – коромысло; ГС – горючая смесь.
В механизме с верхним расположением клапанов при вращении распределительного вала кулачок 1 (рис. 3.1) набегает на толкатель 2, и поднимает его вместе со штангой 6 вверх. Штанга поворачивает коромысло 7, которое бойком нажимает на стержень клапана. Вследствие этого клапан опускается вниз, и цилиндр соединяется с впускным или выпускным трубопроводом. Пружина 3 клапана сжимается. После наполнения или очистки цилиндра кулачок выходит из-под толкателя, и клапан под действием пружины опускается на седло. Клапан передвигается в направляющей втулке 4, запрессованной в головке цилиндров. Пружина одним концом опирается на тарелку, соединенную с клапаном при помощи сухарей, а другим – в опорную шайбу.
3.3. Привод распределительного вала
Вал приводится во вращение у двигателей ЗИЛ двумя шестернями с косыми зубьями, одну из которых крепят на коленчатом, а другую – на распределительном валу. У двигателей ЗИЛ-130 шестерня распределительного вала изготовлена из чугуна. При установке шестерен необходимо совмещать метки на их зубьях. От осевого смещения распределительный вал удерживает фланец, который крепят двумя болтами к передней стенке блока цилиндров.
В двигателе КамАЗ-740 привод распределительного вала осуществляется от шестерни коленчатого вала через промежуточные шестерни, расположенные на заднем торце блока двигателя; шестерни также устанавливаются по меткам. Осевое перемещение вала предотвращает подшипник задней опоры, крепящийся к блоку тремя болтами.
На автомобилях с верхним расположением распределительного вала (Газель) он приводится в движение при помощи цепной передачи или зубчатого ремня.
Привод распределительного вала осуществляется через прикрепленную к его переднему концу ведомую шестерню. Она находится в зацеплении с ведущей стальной шестерней, установленной на коленчатом валу. Обе шестерни выполнены косозубыми для уменьшения шума и обеспечения плавной работы. Передаточное отношение шестеренного привода – отношение числа зубьев ведущей шестерни к числу зубьев ведомой шестерни – равно 1:2, т.е. ведомая шестерня имеет в два раза больше зубьев, чем ведущая шестерня. Это необходимо для того, чтобы за два оборота коленчатого вала распределительный вал совершал один оборот, обеспечивая за полный цикл двигателя открытие впускного и выпускного клапанов каждого цилиндра по одному разу.
Распределительные зубчатые колеса необходимо точно соединять по меткам для правильной установки фаз газораспределения.
3.4. Фазы газораспределения. Их влияние на работу двигателя
При рассмотрении рабочих циклов двигателей условно принято, что открытие и закрытие клапанов происходит в момент нахождения поршня соответственно в ВМТ или в НМТ. В действительности моменты открытия и закрытия клапанов не совпадают с положением поршней в мертвых точках.
Рис. 3.2. Диаграммы фаз газораспределения двигателя автомобиля ЗИЛ-130:
1 – 2 – фаза впуска; 3 – 4 – фаза выпуска;
О – центр вращения коленчатого вала
Клапаны открываются и закрываются с некоторым, иногда очень значительным, опережением или запаздыванием, что необходимо для улучшения наполнения цилиндров горючей смесью и лучшей очистки их от отработавших газов. Моменты открытия и закрытия клапанов, выраженные в градусах угла поворота коленчатого вала по отношению к соответствующим мертвым точкам, называют фазами газораспределения и изображают в виде круговых диаграмм (рис 6.2).
Рассмотрим диаграмму фаз газораспределения четырехтактного двигателя ЗИЛ-130. Впускной клапан открывается (точка 1) с опережением (угол α), т. е. до прихода кривошипа коленчатого вала и поршня в ВМТ. Вследствие этого в начале движения поршня вниз впускной клапан будет уже открыт на значительную величину, и наполнение цилиндра (вследствие разрежения) воздухом или горючей смесью улучшается. Закрывается впускной клапан (точка 2) с запаздыванием (угол δ), т. е. кривошип вала и поршень проходят НМТ, поднимаются вверх, совершая такт сжатия, а клапан в это время еще открыт, и горючая смесь по инерции заполняет цилиндр.
Выпускной клапан открывается (точка 3) до прихода кривошипа коленчатого вала и поршня в НМТ, т. е с опережением (угол γ). Поршень движется вниз, а отработавшие газы уже начинают выходить из цилиндра, так как давление в нем больше атмосферного. Поэтому при движении поршня вверх, во время такта выпуска, меньше затрачивается работы на удаление отработавших газов из цилиндра двигателя. Закрытие выпускного клапана (точка 4) происходит с запаздыванием (угол β) — после перехода кривошипом вала и поршнем ВМТ. В этом случае используется отсасывающее действие потока газов в выпускном трубопроводе.
Таким образом, в результате открытия выпускного клапана с опережением и закрытия его с запаздыванием улучшается очистка цилиндра от отработавших газов. Анализируя диаграмму, видим, что в течение некоторого времени, за которое коленчатый вал поворачивается на угол, равный сумме углов α + β, открыты оба клапана — впускной и выпускной. Этот период называют перекрытием клапанов. Он необходим для лучшей очистки цилиндра от отработавших газов.
Таким образом продолжительность открытия клапанов будет: впускного – 294˚; выпускного – 294˚. Угол перекрытия клапанов – 78˚.
3.5. Назначение системы охлаждения
В современных автомобильных двигателях в полезную работу превращается лишь 23-40% теплоты, выделяющейся в цилиндрах двигателя, остальная теплота уносится отработавшими газами, с охлаждающей жидкостью или воздухом и затрачивается на трение, рассеивание в окружающую среду внешними поверхностями двигателя и др.
Теплота, используемая на выполнение полезной работы, а также ее затраты на указанные виды потерь составляют тепловой баланс двигателя.
Так как сгорание в двигателе происходит при высоких температурах, достигающих 2100-2300 °С, то без принудительного охлаждения такие детали, как цилиндр, поршень и направляющие втулки клапанов, нагревались бы до температуры, значительно превышающей температуру воспламенения (вспышки) масла.
Поэтому для поддержания нормального теплового режима работы узлов и механизмов необходимо непрерывно отводить теплоту от взаимодействующих деталей, не допуская их перегрева. Для этого и служит система охлаждения двигателя.
Количество теплоты, которое должна отводить система охлаждения, зависит от мощности и режимов работы двигателя.
При перегреве двигателя увеличиваются силы трения и изнашивание деталей, уменьшаются тепловые зазоры, происходит коксование масла с отложением нагара, ухудшается наполнение цилиндров карбюраторных двигателей горючей смесью, а дизелей – очищенным воздухом. Однако при чрезмерном отводе тепла возникает переохлаждение двигателя, которое вызывает изменение вязкостных свойств масла, что приводит также к увеличению изнашивания деталей и механических потерь на трение, снижению мощности и экономичности двигателя.
Поэтому следует поддерживать тепловой режим двигателя в пределах 85-95 °С независимо от его нагрузки и температуры окружающей среды.
3.6. Общее устройство и работа жидкостной системы охлаждения
Большинство двигателей имеет жидкостные системы охлаждения. Распространение получили закрытые системы охлаждения с принудительной циркуляцией жидкости. В данных системах внутреннее пространство только периодически сообщается с окружающей средой при помощи специальных клапанов. В этих системах повышается температура кипения охлаждающей жидкости, уменьшается ее выкипание и образование накипи. Жидкость подается в двигатель насосом под давлением. Интенсивность циркуляции жидкости и обдув радиатора воздухом зависят от частоты вращения коленчатого вала двигателя. Открытые системы охлаждения на автомобильных двигателях не применяются.
Принципиальная схема жидкостной системы охлаждения двигателя показана на рис. 3.3.
Рис. 3.3. Схема жидкостной системы охлаждения двигателя:
1 – радиатор; 2 – верхний бачок; 3 – пробка радиатора; 4 – контрольная трубка; 5 – верхний патрубок радиатора; 6 и 19 – резиновые шланги; 7 – перепускной шланг; 8 и 18 – соответственно отводящий и подводящий патрубки; 9 – термостат; 10 – отверстие; 11 – головка блока; 12 – водораспределительная трубка; 13 – датчик указателя температуры жидкости; 14 – блок цилиндров; 15 и 21 – сливные краны; 16 – водяная рубашка; 17 – крыльчатка водяного центробежного насоса; 20 – нижний патрубок радиатора; 22 – нижний бачок радиатора; 23 – ремень привода вентилятора; 24 – вентилятор
Система охлаждения автомобильного двигателя состоит из водяной рубашки 16, радиатора 1, вентилятора 24, термостата 9, насоса с крыльчаткой 17, отводящего 8 и подводящего 18 патрубков, ремня 23 привода вентилятора, датчика 13 указателя температуры жидкости, сливных кранов 15 и 21 и других деталей. Вокруг цилиндров двигателя и головки блока имеется пространство с двойными стенками (водяная рубашка или водяная полость), где циркулирует охлаждающая жидкость.
Во время работы двигателя охлаждающая жидкость нагревается и подается водяным насосом в радиатор, где она охлаждается, а затем снова поступает в рубашку блока цилиндров. Для надежной работы двигателя необходимо, чтобы охлаждающая жидкость постоянно циркулировала по замкнутому кругу двигатель — радиатор — двигатель. Жидкость может циркулировать по малому кругу, минуя радиатор (непрогретый двигатель, термостат закрыт), или по большому кругу, поступая в радиатор (прогретый двигатель, термостат открыт). Направление движения охлаждающей жидкости показано на рис. 2 стрелками.
Водяная рубашка 16 двигателя состоит из рубашки блока цилиндров и рубашки головки блока, соединенных между собой отверстиями в прокладке между головкой и блоком. Крыльчатка 17 водяного центробежного насоса и вентилятор приводятся в действие клиновидным ремнем 23. При вращении крыльчатки насоса охлаждающая жидкость нагнетается в водораспределительную трубку 12, расположенную в головке блока. Через отверстия 10 в трубке жидкость направляется к патрубкам выпускных клапанов, благодаря чему охлаждаются наиболее нагретые части головки блока и цилиндров. Нагретая охлаждающая жидкость поступает в верхний отводящий патрубок 8. Если термостат 9 закрыт, то по перепускному шлангу 7 жидкость снова поступает к центробежному насосу. При открытом термостате охлаждающая жидкость проходит в верхний бачок 2 радиатора, охлаждается, протекая по трубкам и поступает в нижний бачок 22 радиатора. Охлажденная в радиаторе жидкость по нижнему подводящему патрубку 18 подводится к насосу.
В качестве охлаждающих жидкостей применяется вода или ее этиленгликолевые смеси – антифризы. Широкое распространение получили смеси, замерзающие при низкой температуре – ТОСОЛ А-40 и ТОСОЛ А-65. Оба антифриза получают разбавлением технического этиленгликоля водой, например ТОСОЛ А-40 представляет собой 50%-ную смесь воды с этиленгликолем, которая при температуре – 40 °С превращается не в лед, а в густую массу, не вызывающую повреждения блока цилиндров или радиатора.
3.7. Назначение системы смазки
Назначение смазочной системы. Поверхности сопряженных деталей двигателя отличаются высокой точностью и качеством обработки. Однако на них имеются микроскопические неровности, которые при перемещении одной детали по другой создают силу трения. Она зависит от точности обработки трущихся поверхностей, давления и относительной скорости перемещения деталей. На преодоление силы трения затрачивается 10. 15% мощности двигателя.
Для уменьшения трения между поверхностями соприкасающихся деталей вводят слой масла. В этом случае происходит жидкостное трение, т. е. трение между частицами масла. Тогда сила трения значительно уменьшается, и детали почти не изнашиваются, предохраняются от коррозии, зазоры между ними уплотняются.
Кроме того, масло, проходя между трущимися поверхностями, охлаждает их и уносит твердые частицы, образующиеся при износе.
Для смазывания деталей автомобильных двигателей применяют масла, полученные путем переработки остатков нефти после отгонки из нее жидких топлив. Масла должны иметь следующие стабильные свойства: соответствующую вязкость, возможно низкую температуру застывания и высокую температуру вспышки; в них должны отсутствовать механические примеси, кислоты, щелочи и вода.
3.8. Общее устройство и работа системы смазки. Способы подачи масла к трущимся поверхностям
У двигателя ЗМЗ-53 (рис. 3.4) двухсекционный шестеренный масляный насос прикреплен снаружи к верхней, части картера двигателя с левой стороны и приводится в действие вместе с валиком распределителя системы зажигания от распределительного вала двигателя. Верхняя секция масляного насоса нагнетает масло в горизонтальную масляную магистраль, расположенную продольно в верхней части картера с правой стороны.
От нижней секции насоса масло по каналам в картере и наружному маслопроводу поступает в центробежный очиститель масла с реактивным приводом (центрифугу), откуда сливается в поддон картера, смазывая при этом распределительные шестерни.